您的当前位置:首页正文

2019-2020年重庆市万州区八年级上册期末数学试卷(有答案)

2023-08-16 来源:九壹网
重庆市万州区八年级(上)期末数学试卷

一、选择题:(本大题12个小题,每小题4分,共48分)每小题都给出了代号为ABCD的四个答案,其中只有一个是正确的,请将正确答案填涂在答题卷中对应方框内 1.(4分)在下列实数中,无理数是( ) A.

B.

C.

D.0.2020020002

2.(4分)下列运算正确的是( )

A.a5•a4=a20 B.(a4)3=a12 C.a12÷a6=a2 D.(﹣3a2)2=6a4 3.(4分)若一个数的平方根等于它本身,则这个数是( ) A.0 B.1

C.0或1 D.0或±1

4.(4分)分解因式33﹣12,结果正确的是( ) A.3(﹣2)2 B.3(+2)2

C.3(2﹣4) D.3(﹣2)(+2)

5.(4分)以下列各组数为边长,不能组成直角三角形的是( ) A.3、4、5

B.7、24、25 C.6、8、10

D.3、5、7

6.(4分)要反映我区12月11日至17日这一周每天的最高气温的变化趋势,宜采用( )

A.条形统计图 B.折线统计图

C.扇形统计图 D.频数分布统计图

7.(4分)若(+m)(﹣8)中不含的一次项,则m的值为( ) A.8 B.﹣8 C.0

D.8或﹣8

8.(4分)如图,已知∠BDA=∠CDA,则不一定能使△ABD≌△ACD的条件是( )

A.BD=DC B.AB=AC C.∠B=∠C D.∠BAD=∠CAD

9.(4分)如图,△ABC的两边AC和BC的垂直平分线分别交AB于D、E两点,若AB边的长为10cm,则△CDE的周长为( )

A.10cm B.20cm C.5cm D.不能确定

10.(4分)如图,在Rt△ABC中,∠B=90°,以AC为直径的圆恰好过点B,AB=8,BC=6,则阴影部分的面积是( )

A.100π﹣24 B.100π﹣48 C.25π﹣24 D.25π﹣48

11.(4分)下面给出五个命题:①若=﹣1,则3=﹣1;②角平分线上的点到角的两边距离相等;③相等的角是对顶角;④若2=4,则=2;⑤面积相等的两个三角形全等,是真命题的个数有( ) A.4个

B.3个 C.2个 D.1个

12.(4分)因式分解2+a+b,甲看错了a的值,分解的结果是(+6)(﹣2),乙看错了b的值,分解的结果为(﹣8)(+4),那么2+a+b分解因式正确的结果为( ) A.(+3)(﹣4) B.(+4)(﹣3)

二、填空题:(本大题共6小题,每小题4分,共24分)在每小题中,请将答案直接填写在答题卷中对应的横线上

13.(4分)16的平方根是 .

14.(4分)已知a+b=10,a﹣b=8,则a2﹣b2= .

15.(4分)如图,这是小新在询问了父母后绘制的去年全家的开支情况扇形统计图,如果他家去年总开支为6万元,那么用于教育的支出为 万元.

C.(+6)(﹣2)

D.(+2)(﹣6)

16.(4分)若直角三角形的两小边为5、12,则第三边为 .

17.(4分)根据(﹣1)(+1)=2﹣1,(﹣1)(2++1)=3﹣1,(﹣1)(3+2++1)=4﹣1,…的规律,则可以得出22017+22016+22015+…+23+22+2+1的结果可以表示为 .

18.(4分)如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE⊥BD,交BD的延长线于点E,若BD=8,则CE= .

三、解答题:(本大题共2个小题,每小题8分,共16分)解答时必须给出必要的演算过程或推理步骤,请将解答题书写在答题卷中对应的位置上. 19.(8分)计算:(π﹣2

)0+|

﹣3|﹣

+(﹣)﹣2.

20.(8分)如图,已知点B、E、F、C在同一条直线上,∠A=∠D,BE=CF,且AB∥CD,求证:AE=DF.

四、解答题(本大题共4个小题,每小题10分,共40分)解答题解答时必须给出必要的演算过程或推理步骤,请将解答题书写在答题卷中对应的位置上.

21.(10分)先化简,再求值:当|﹣2|+(y+1)2=0时,求[(3+2y)(3﹣2y)+(2y+)(2y﹣3)]÷4的值.

22.(10分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门随机调查了某单位员工上下班的交通方式,绘制了如下统计图,根据统计图,完成下列问题: (1)调查的总人数为 ; (2)补全条形统计图;

(3)该单位共有2000人,为了积极践行“低碳生活,绿色出行”这种生活方式,调查后开私家车的人上下班全部改为骑自行车,则现在骑自行车的人数约为多少人?

23.(10分)为了丰富少年儿童的业余生活,某社区要在如图中的AB所在的直线上建一图

书室,本社区有两所学校所在的位置在点C和点D处,CA⊥AB于A,DB⊥AB于B.已知AB=2.5m,CA=1.5m,DB=1.0m,试问:图书室E应该建在距点A多少m处,才能使它到两所学校的距离相等?

24.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作AE的垂线CF,垂足为F,过点B作BD⊥BC,交CF的延长线于点D. (1)求证:AE=CD; (2)若AB=4

,求BD的长.

五、解答题(本大题共2个小题,其中25题10分,26题12分,共22分)解答时必须给出必要的演算过程或推理步骤,请将解答题书写在答题卷中对应的位置上

25.b是正整数)(10分)若一个整数能表示成a2+b2(a、的形式,则称这个数为“丰利数”.例如,2是“丰利数”,因为2=12+12,再如,M=2+2y+2y2=(+y)2+y2(+y,y是正整数),所以M也是“丰利数”.

(1)请你写一个最小的三位“丰利数”是 ,并判断20 “丰利数”.(填是或不是);

(2)已知S=2+y2+2﹣6y+(、y是整数,是常数),要使S为“丰利数”,试求出符合条件的一个值(10≤<200),并说明理由.

26.(12分)如图,在△ABC中,AB=AC,BG⊥AC于G,DE⊥AB于E,DF⊥AC于F. (1)在图(1)中,D是BC边上的中点,判断DE+DF和BG的关系,并说明理由. (2)在图(2)中,D是线段BC上的任意一点,DE+DF和BG的关系是否仍然成立?如果成立,证明你的结论;如果不成立,请说明理由.

(3)在图(3)中,D是线段BC延长线上的点,探究DE、DF与BG的关系.(不要求证明,

直接写出结果)

重庆市万州区八年级(上)期末数学试卷

参考答案与试题解析

一、选择题:(本大题12个小题,每小题4分,共48分)每小题都给出了代号为ABCD的四个答案,其中只有一个是正确的,请将正确答案填涂在答题卷中对应方框内 1.(4分)在下列实数中,无理数是( ) A.

B.

C.

D.0.2020020002

,0.2020020002为有理数.

【解答】解:故选:C.

为无理数,

2.(4分)下列运算正确的是( )

A.a5•a4=a20 B.(a4)3=a12 C.a12÷a6=a2 D.(﹣3a2)2=6a4 【解答】解:A、a5•a4=a9,故此选项错误; B、(a4)3=a12,正确;

C、a12÷a6=a6,故此选项错误; D、(﹣3a2)2=9a4,故此选项错误; 故选:B.

3.(4分)若一个数的平方根等于它本身,则这个数是( ) A.0 B.1

C.0或1 D.0或±1

【解答】解:若一个数的平方根等于它本身,则这个数是:0. 故选:A.

4.(4分)分解因式33﹣12,结果正确的是( ) A.3(﹣2)2 B.3(+2)2

C.3(2﹣4) D.3(﹣2)(+2)

【解答】解:33﹣12=3(2﹣4) =3(+2)(﹣2). 故选:D.

5.(4分)以下列各组数为边长,不能组成直角三角形的是( ) A.3、4、5

B.7、24、25 C.6、8、10

D.3、5、7

【解答】解:A、∵32+42=25=52,∴能组成直角三角形,故本选项正确; B、∵72+242=625=252,∴能组成直角三角形,故本选项正确; C、62+82=100=102,∴能组成直角三角形,故本选项正确; D、32+52=34≠72=49,∴不能组成直角三角形,故本选项错误. 故选:D.

6.(4分)要反映我区12月11日至17日这一周每天的最高气温的变化趋势,宜采用( )

A.条形统计图 B.折线统计图

C.扇形统计图 D.频数分布统计图

【解答】解:根据题意,要求直观反映我市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图. 故选:B.

7.(4分)若(+m)(﹣8)中不含的一次项,则m的值为( ) A.8 B.﹣8 C.0

D.8或﹣8

【解答】解:∵(+m)(﹣8)=2﹣8+m﹣8m=2+(m﹣8)﹣8m, 又结果中不含的一次项, ∴m﹣8=0, ∴m=8. 故选:A.

8.(4分)如图,已知∠BDA=∠CDA,则不一定能使△ABD≌△ACD的条件是( )

A.BD=DC B.AB=AC C.∠B=∠C D.∠BAD=∠CAD

【解答】解:A、BD=DC,∠BDA=∠CDA,AD=AD,符合全等三角形的判定定理SAS,能推出△ABD≌△ACD,故本选项错误;

B、AB=AC,AD=AD,∠BDA=∠CDA,不符合全等三角形的判定定理,不能推出△ABD≌△ACD,故本选项正确;

C、∠B=∠C,∠BDA=∠CDA,AD=AD,符合全等三角形的判定定理AAS,能推出△ABD≌△

ACD,故本选项错误;

D、∠BDA=∠CDA,AD=AD,∠BAD=∠CAD,符合全等三角形的判定定理ASA,能推出△ABD≌△ACD,故本选项错误; 故选:B.

9.(4分)如图,△ABC的两边AC和BC的垂直平分线分别交AB于D、E两点,若AB边的长为10cm,则△CDE的周长为( )

A.10cm B.20cm C.5cm D.不能确定

【解答】解:∵△ABC的两边BC和AC的垂直平分线分别交AB于D、E, ∴AD=CD,BE=CE, ∵边AB长为10cm,

∴△CDE的周长为:CD+DE+CE=AD+DE+BE=AB=10cm. 故选:A.

10.(4分)如图,在Rt△ABC中,∠B=90°,以AC为直径的圆恰好过点B,AB=8,BC=6,则阴影部分的面积是( )

A.100π﹣24 B.100π﹣48 C.25π﹣24 D.25π﹣48

【解答】解:∵Rt△ABC中∠B=90°,AB=8,BC=6, ∴AC=

=

=10,

∴AC为直径的圆的半径为5,

∴S阴影=S圆﹣S△ABC=25π﹣×6×8=25π﹣24. 故选:C.

11.(4分)下面给出五个命题:①若=﹣1,则3=﹣1;②角平分线上的点到角的两边距离相

等;③相等的角是对顶角;④若2=4,则=2;⑤面积相等的两个三角形全等,是真命题的个数有( ) A.4个

B.3个 C.2个 D.1个

【解答】解:①若=﹣1,则3=﹣1,正确; ②角平分线上的点到角的两边距离相等,正确; ③相等的角是对顶角,错误; ④若2=4,则=±2,故此选项错误; ⑤面积相等的两个三角形全等,错误. 故选:C.

12.(4分)因式分解2+a+b,甲看错了a的值,分解的结果是(+6)(﹣2),乙看错了b的值,分解的结果为(﹣8)(+4),那么2+a+b分解因式正确的结果为( ) A.(+3)(﹣4) B.(+4)(﹣3)

C.(+6)(﹣2)

D.(+2)(﹣6)

【解答】解:甲看错了a的值:2+a+b=(+6)(﹣2)=2+4﹣12, ∴b=﹣12

乙看错了b的值:2+a+b=(﹣8)(+4)=2﹣4﹣32, ∴a=﹣4

∴2+a+b分解因式正确的结果:2﹣4﹣12=(﹣6)(+2) 故选:D.

二、填空题:(本大题共6小题,每小题4分,共24分)在每小题中,请将答案直接填写在答题卷中对应的横线上

13.(4分)16的平方根是 ±4 . 【解答】解:∵(±4)2=16, ∴16的平方根是±4. 故答案为:±4.

14.(4分)已知a+b=10,a﹣b=8,则a2﹣b2= 80 . 【解答】解:∵(a+b)(a﹣b)=a2﹣b2, ∴a2﹣b2=10×8=80, 故答案为:80

15.(4分)如图,这是小新在询问了父母后绘制的去年全家的开支情况扇形统计图,如果他家去年总开支为6万元,那么用于教育的支出为 2 万元.

【解答】解:他家用于教育的支出的费用=故答案为2.

×6=2(万元).

16.(4分)若直角三角形的两小边为5、12,则第三边为 13 . 【解答】解:∵直角三角形的两小边为5、12, ∴第三边=故答案为:13.

17.(4分)根据(﹣1)(+1)=2﹣1,(﹣1)(2++1)=3﹣1,(﹣1)(3+2++1)=4﹣1,…的规律,则可以得出22017+22016+22015+…+23+22+2+1的结果可以表示为 22018﹣1 . 【解答】解:22017+22016+22015+…+23+22+2+1 =(2﹣1)(22017+22016+22015+…+23+22+2+1) =22018﹣1.

故答案为:22018﹣1.

18.(4分)如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE⊥BD,交BD的延长线于点E,若BD=8,则CE= 4 .

=13,

【解答】解:如图,延长BA、CE相交于点F, ∵BD平分∠ABC, ∴∠ABD=∠CBD,

在△BCE和△BFE中,

∴△BCE≌△BFE(ASA), ∴CE=EF,

∵∠BAC=90°,CE⊥BD,

∴∠ACF+∠F=90°,∠ABD+∠F=90°, ∴∠ABD=∠ACF, 在△ABD和△ACF中,

∴△ABD≌△ACF(ASA), ∴BD=CF, ∵CF=CE+EF=2CE, ∴BD=2CE=8, ∴CE=4. 故答案为:4.

三、解答题:(本大题共2个小题,每小题8分,共16分)解答时必须给出必要的演算过程或推理步骤,请将解答题书写在答题卷中对应的位置上. 19.(8分)计算:(π﹣2【解答】解:原式=1+3﹣=﹣

20.(8分)如图,已知点B、E、F、C在同一条直线上,∠A=∠D,BE=CF,且AB∥CD,求

)0+|﹣8+4

﹣3|﹣

+(﹣)﹣2.

证:AE=DF.

【解答】证明:∵AB∥CD, ∴∠B=∠C,

在△ABE和△DCF中, ∵

∴△ABE≌△DCF(ASA), ∴AE=DF.

四、解答题(本大题共4个小题,每小题10分,共40分)解答题解答时必须给出必要的演算过程或推理步骤,请将解答题书写在答题卷中对应的位置上.

21.(10分)先化简,再求值:当|﹣2|+(y+1)2=0时,求[(3+2y)(3﹣2y)+(2y+)(2y﹣3)]÷4的值.

【解答】解:∵|﹣2|+(y+1)2=0, ∴﹣2=0,y+1=0, 解得,=2,y=﹣1,

∴[(3+2y)(3﹣2y)+(2y+)(2y﹣3)]÷4 =(92﹣4y2+4y2﹣6y+2y﹣32)÷4 =(62﹣4y)÷4 =1.5﹣y

=1.5×2﹣(﹣1) =3+1 =4.

22.(10分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门随机调查了某单位员工上下班的交通方式,绘制了如下统计图,根据统计图,完成下列问题: (1)调查的总人数为 80 ; (2)补全条形统计图;

(3)该单位共有2000人,为了积极践行“低碳生活,绿色出行”这种生活方式,调查后开私家车的人上下班全部改为骑自行车,则现在骑自行车的人数约为多少人?

【解答】解:(1)调查的总人数为:36÷45%=80人, 故答案为:80;

(2)开私家车的人数m=80×25%=20;

扇形统计图中“骑自行车”所占的百分比为:1﹣10%﹣25%﹣45%=20%, 则骑自行车的人数为80×20%=16人, 补全统计图如图所示;

(3)现在骑自行车的人数约为2000×

=900人.

23.(10分)为了丰富少年儿童的业余生活,某社区要在如图中的AB所在的直线上建一图书室,本社区有两所学校所在的位置在点C和点D处,CA⊥AB于A,DB⊥AB于B.已知AB=2.5m,CA=1.5m,DB=1.0m,试问:图书室E应该建在距点A多少m处,才能使它到两所学校的距离相等?

【解答】解:由题意可得:设AE=m,则EB=(2.5﹣)m, ∵AC2+AE2=EC2,BE2+DB2=ED2,EC=DE,

∴AC2+AE2=BE2+DB2, ∴1.52+2=(2.5﹣)2+12, 解得:=1.

答:图书室E应该建在距点A1m处,才能使它到两所学校的距离相等.

24.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作AE的垂线CF,垂足为F,过点B作BD⊥BC,交CF的延长线于点D. (1)求证:AE=CD; (2)若AB=4

,求BD的长.

【解答】(1)证明:∵DB⊥BC,CF⊥AE, ∴∠DCB+∠D=∠DCB+∠AEC=90°. ∴∠D=∠AEC.

又∵∠DBC=∠ECA=90°, 且BC=CA,

在△DBC与△ECA中

∴△DBC≌△ECA(AAS). ∴AE=CD.

(2)由(1)得AE=CD,AC=BC, ∴Rt△CDB≌Rt△AEC(HL) ∵AB=4∴AC=4

∴BD=EC=BC=AC, ∴BD=2.

五、解答题(本大题共2个小题,其中25题10分,26题12分,共22分)解答时必须给出必要的演算过程或推理步骤,请将解答题书写在答题卷中对应的位置上

25.b是正整数)(10分)若一个整数能表示成a2+b2(a、的形式,则称这个数为“丰利数”.例如,2是“丰利数”,因为2=12+12,再如,M=2+2y+2y2=(+y)2+y2(+y,y是正整数),所以M也是“丰利数”.

(1)请你写一个最小的三位“丰利数”是 100 ,并判断20 是 “丰利数”.(填是或不是);

(2)已知S=2+y2+2﹣6y+(、y是整数,是常数),要使S为“丰利数”,试求出符合条件的一个值(10≤<200),并说明理由. 【解答】解:(1)∵62=36,82=64, ∴最小的三位“丰利数”是:62+82=100, ∵20=42+22, ∴20是“丰利数”

故答案为:101;是;…4分(各2分) (2)S=2+y2+2﹣6y+,…6分

=(2+2+1)+(y2﹣6y+9)+(﹣10), =(+1)2+(y﹣3)2+(﹣10),…8分

当(+1)2、(y﹣3)2是正整数的平方时,﹣10为零时,S是“丰利数”, 故的一个值可以是10…10分

备注:的值可以有其它值:0+4+1,得=11;9+0+4,得=14.

26.(12分)如图,在△ABC中,AB=AC,BG⊥AC于G,DE⊥AB于E,DF⊥AC于F. (1)在图(1)中,D是BC边上的中点,判断DE+DF和BG的关系,并说明理由. (2)在图(2)中,D是线段BC上的任意一点,DE+DF和BG的关系是否仍然成立?如果成立,证明你的结论;如果不成立,请说明理由.

(3)在图(3)中,D是线段BC延长线上的点,探究DE、DF与BG的关系.(不要求证明,

直接写出结果)

【解答】解:(1)结论:DE+DF=BG.

理由:连结AD.则△ABC的面积=△ABD的面积+△ACD的面积,

即AB•DE+AC•DF=AC•BG, ∵AB=AC, ∴DE+DF=BG,

(2)证明:如图2,连结AD.

则△ABC的面积=△ABD的面积+△ACD的面积, 即

AB•DE+AC•DF=AC•BG,

∵AB=AC, ∴DE+DF=BG;

(3)DE﹣DF=BG,

证明:如图3,连接AD,则△ABC的面积=△ABD的面积﹣△ACD的面积, 即

AB•DE﹣AC•DF=AC•BG,

∵AB=AC, ∴DE﹣DF=BG.

因篇幅问题不能全部显示,请点此查看更多更全内容