您的当前位置:首页正文

北师大版数学八年级上册知识点总结

2024-08-09 来源:九壹网
北师大版八年级上册数学知识点总结

第一章勾股定理

1、勾股定理

(1)直角三角形两直角边a,b的平方和等于斜边c的平方,即a2b2c2

(2)勾股定理的验证:测量、数格子、拼图法、面积法,如青朱出入图、五巧板、玄图、总统证法„„(通过面积的不同表示方法得到验证,也叫等面积法或等积法)(3)勾股定理的适用范围:仅限于直角三角形2、勾股定理的逆定理

如果三角形的三边长a,b,c有关系a2b2c2,那么这个三角形是直角三角形。3、勾股数:满足a2b2c2的三个正整数,称为勾股数。

常见的勾股数有:(6,8,10)(3,4,5)(5,12,,13)(9,12,15)(7,24,25)(9,40,41)

„„

4、勾股数的规律:

(1),短直角边为奇数,另一条直角边与斜边是两个连续的自然数,

两边之和是短直角边的平方。即当a为奇数且a<b时,如果b+c=a2,那么a,b,c就是一组勾股数.如(3,4,5)(5,12,,13)(7,24,25)(9,40,41)„„(2)大于2的任意偶数,2n(n>1)都可构成一组勾股数分别是:2n,n2-1,n2+1(6,8,10)(8,15,17)(10,24,26)„„

如:

第二章实数

一、实数的概念及分类

1、实数的分类

正有理数

有理数

实数

零负有理数正无理数

无理数

负无理数

2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如7,32等;

无限不循环小数

有限小数和无限循环小数

π

(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;

3

(3)有特定结构的数,如0.1010010001„等;(4)某些三角函数值,如sin60o等二、实数的倒数、相反数和绝对值

1、相反数

实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

2、绝对值

在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|≥0)。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

3、倒数

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

4、数轴

规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。5、估算

三、平方根、算数平方根和立方根

1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。

表示方法:记作“a”,读作根号a。

性质:正数和零的算术平方根都只有一个,零的算术平方根是零。

2、平方根:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。

表示方法:正数a的平方根记做“

a”,读作“正、负根号a”。

性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。开平方:求一个数a的平方根的运算,叫做开平方。

a0

注意a的双重非负性:

a0

3、立方根

一般地,如果一个数x的立方等于a,即x3=a那么这个数x就叫做a的立方根(或三

次方根)。

表示方法:记作3a

性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。注意:3a3a,这说明三次根号内的负号可以移到根号外面。四、实数大小的比较

1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

2、实数大小比较的几种常用方法

(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。(2)求差比较:设a、b是实数,

ab0ab,ab0ab,ab0ab

aaa

(3)求商比较法:设a、b是两正实数,1ab;1ab;1ab;

bbb

(4)绝对值比较法:设a、b是两负实数,则abab。(5)平方法:设a、b是两负实数,则a2b2ab。五、算术平方根有关计算(二次根式)

1、含有二次根号“2、性质:

(1)(a)2a(a0)

”;被开方数a必须是非负数。

a(a0)

(2)a2a

a(a0)

(3)ab

ab(a0,b0)(abab(a0,b0))

a

(a0,b0))(

bb

a

aa

(a0,b0)(4)bb

3、运算结果若含有“a”形式,必须满足:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式六、实数的运算

(1)六种运算:加、减、乘、除、乘方、开方

(2)实数的运算顺序

先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。(3)运算律

加法交换律加法结合律乘法交换律乘法结合律

abba

(ab)ca(bc)abba

(ab)ca(bc)

乘法对加法的分配律a(bc)abac

第三章位置的确定

一、在平面内,确定物体的位置一般需要两个数据。二、平面直角坐标系及有关概念1、平面直角坐标系

在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。3、点的坐标的概念

对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当ab时,(a,b)和(b,a)是两个不同点的坐标。

平面内点的与有序实数对是一一对应的。4、不同位置的点的坐标的特征

(1)、各象限内点的坐标的特征点P(x,y)在第一象限x0,y0点P(x,y)在第二象限x0,y0点P(x,y)在第三象限x0,y0

点P(x,y)在第四象限x0,y0(2)、坐标轴上的点的特征

点P(x,y)在x轴上y0,x为任意实数点P(x,y)在y轴上x0,y为任意实数

点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)即原点(3)、两条坐标轴夹角平分线上点的坐标的特征

点P(x,y)在第一、三象限夹角平分线(直线y=x)上x与y相等点P(x,y)在第二、四象限夹角平分线上x与y互为相反数(4)、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。位于平行于y轴的直线上的各点的横坐标相同。(5)、关于x轴、y轴或原点对称的点的坐标的特征

点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)

点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)

点P与点p’关于原点对称横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)

(6)、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x轴的距离等于y(2)点P(x,y)到y轴的距离等于x(3)点P(x,y)到原点的距离等于x2y2

三、坐标变化与图形变化的规律:

坐标( x, y)的变化

x× a或 y× ax× a, y× ax×( -1)或 y×( -1)x×( -1), y×( -1)

x +a或 y+ ax +a, y+ a

图形的变化

被横向或纵向拉长(压缩)为原来的 a倍

放大(缩小)为原来的 a倍关于 y轴或 x轴对称关于原点成中心对称沿 x轴或 y轴平移 a个单位

沿 x轴平移 a个单位,再沿 y轴平移 a个单

第四章一次函数

一、函数:

一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。二、自变量取值范围

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。三、函数的三种表示法及其优缺点

(1)关系式(解析)法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图象法

用图象表示函数关系的方法叫做图象法。四、由函数关系式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。五、正比例函数和一次函数 1、正比例函数和一次函数的概念

一般地,若两个变量x,y间的关系可以表示成ykxb(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

特别地,当一次函数ykxb中的b=0时(即ykx)(k为常数,k0),称y是x的正比例函数。

2、一次函数的图像:所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:

一次函数ykxb的图像是经过点(0,b)的直线;正比例函数ykx的图像是经过原点(0,0)的直线。k的符号

b的符号

函数图像

图像特征

y

b>0

0 x

图像经过一、二、三象限,y随x的增大而增大。

k>0

y

b<0

图像经过一、三、四象限,y

0 x

随x的增大而增大。

y

b>0

0 x

图像经过一、二、四象限,y随x的增大而减小

K<0

y

b<0

图像经过二、三、四象限,y

0 x

随x的增大而减小。

注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。

4、正比例函数的性质一般地,正比例函数y

kx有下列性质:

(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。5、一次函数的性质

一般地,一次函数ykxb有下列性质:(1)当k>0时,y随x的增大而增大(2)当k<0时,y随x的增大而减小6、正比例函数和一次函数解析式的确定

确定一个正比例函数,就是要确定正比例函数定义式ykx(k0)中的常数k。确定一个一次函数,需要确定一次函数定义式ykxb(k0)中的常数k和b。解这类问题的一般方法是待定系数法。

7、一次函数与一元一次方程的关系:

任何一个一元一次方程都可转化为:kx+b=0(k、b为常数,k≠0)的形式.

而一

次函数解析式形式正是y=kx+b(k、b为常数,k≠0).当函数值为0时,•即kx+b=0就与一元一次方程完全相同.

结论:由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k≠0)的形式.所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值.

从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值.

第五章、二元一次方程组

1、二元一次方程

含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。2、二元一次方程的解

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。3、二元一次方程组

含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。4二元一次方程组的解

二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。5、二元一次方程组的解法

(1)代入(消元)法(2)加减(消元)法6、一次函数与二元一次方程(组)的关系:(1)一次函数与二元一次方程的关系:

直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx- y+b=0的解(2)一次函数与二元一次方程组的关系:

二元一次方程组axbyc

11

1

a2xb2yc2

acy1x1

的解可看作两个一次函数b1b

1

1

ac

y2x2

b1b

2

2

和的图象的交点。

当函数图象有交点时,说明相应的二元一次方程组有解;当函数图象(直线)平行即无交点时,说明相应的二元一次方程组无解。

第六章、数据的分析

1、刻画数据的集中趋势(平均水平)的量:平均数、众数、中位数2、平均数

1

(1)平均数:一般地,对于n个数x,x,,x,我们把(xxx)叫做这n

2n12nn1

个数的算术平均数,简称平均数,记为x。

(2)加权平均数:3、众数

一组数据中出现次数最多的那个数据叫做这组数据的众数。4、中位数

一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

第七章、平行线的证明

一、命题 :判断一件事情的句子。

如果一个句子没有对某一件事情做出任何判断,那么它就不是命题。每个命题都由条件和结论两部分组成。条件是已知的事项,结论是由已知事项推论出的事项。命题通常可以写成“如果。。。。。那么。。。。”的形式,其中“如果”引出的部分是条件,“那么”引出的部分是结论。

正确的命题称为真命题,不正确的命题称为假命题。

公认的真命题称为真理。演绎推理的过程称为证明,经历证明的真命题称为定理。二、平行线的判定 1、平行线的判定公理

(1).两直线被第三条直线所截,如果同位角相等,那么这两条直线平行.(2).两条平行线被第三条直线所截,同位角相等.注意:证明两直线平行,关键是找到与特征结论相关的角. 2、

平行线的性质.

定理:两直线平行,同位角相等.定理:两直线平行,内错角相等.

定理:两直线平行,同旁内角互补定理:平行于同一条直线的两条直线平行三、三角形的内角和定理

1、三角形内角和定理:三角形内角和等于180º 2、三角形的一个外角等于和它不相邻的两个内角的和 3、三角形的一个外角大于任何一个和它不相邻的内角

因篇幅问题不能全部显示,请点此查看更多更全内容