您的当前位置:首页正文

高中物理动量守恒定律练习题及答案含解析

2024-08-03 来源:九壹网
高中物理动量守恒定律练习题及答案含解析

一、高考物理精讲专题动量守恒定律

1.水平放置长为L=4.5m的传送带顺时针转动,速度为v=3m/s,质量为m2=3kg的小球被长为l1m的轻质细线悬挂在O点,球的左边缘恰于传送带右端B对齐;质量为m1=1kg的物块自传送带上的左端A点以初速度v0=5m/s的速度水平向右运动,运动至B点与球m2发生碰撞,在极短的时间内以碰撞前速率的

1反弹,小球向右摆动一个小角度即被取走。22已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度g10m/s。求:

(1)碰撞后瞬间,小球受到的拉力是多大?

(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N(2)13.5J 【解析】 【详解】

解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:

112m1gL=m1v12m1v0

22解之可得:v1=4m/s 因为v1v,说明假设合理

滑块与小球碰撞,由动量守恒定律:m1v1=解之得:v2=2m/s

2m2v2碰后,对小球,根据牛顿第二定律:Fm2g

l1m1v12+m2v2 2小球受到的拉力:F42N

(2)设滑块与小球碰撞前的运动时间为t1,则L解之得:t11s

在这过程中,传送带运行距离为:S1vt13m 滑块与传送带的相对路程为:X1LX11.5m

设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为t2 则根据动量定理:m1gt2m11v0v1t1 21v1 2解之得:t22s

滑块向左运动最大位移:xm11v1t2=2m 221v1说明滑块与小球碰后在传送带上的总时间为2t2

在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程

X22vt212m

因此,整个过程中,因摩擦而产生的内能是

Qm1gx1x2=13.5J

2.如图所示,两块相同平板P1、P2置于光滑水平面上,质量均为m。P2的右端固定一轻质弹簧,左端A与弹簧的自由端B相距L。物体P置于P1的最右端,质量为2m且可以看作质点。P1与P以共同速度v0向右运动,与静止的P2发生碰撞,碰撞时间极短,碰撞后P1与P2粘连在一起,P压缩弹簧后被弹回并停在A点(弹簧始终在弹性限度内)。P与P2之间的动摩擦因数为μ,求:

(1)P1、P2刚碰完时的共同速度v1和P的最终速度v2; (2)此过程中弹簧最大压缩量x和相应的弹性势能Ep。

22v0v03v0mv0L,Ep【答案】(1) v1,v2 (2)x 32g1624【解析】(1) P1、P2碰撞过程,动量守恒,mv02mv1,解得v1v0。 23v0 4对P1、P2、P组成的系统,由动量守恒定律 ,(m2m)v04mv2,解得v2(2)当弹簧压缩最大时,P1、P2、P三者具有共同速度v2,对P1、P2、P组成的系统,从

P1、P2碰撞结束到P压缩弹簧后被弹回并停在A点,用能量守恒定律

2v01112222mv12mv0(m2mm)v2u(2mg)2(Lx) 解得xL 22232g对P1、P2、P系统从P1、P2碰撞结束到弹簧压缩量最大,用能量守恒定律

111222mv122mv0(m2mm)v2u(2mg)(Lx)Ep 2222mv0最大弹性势能EP

16 注意三个易错点:碰撞只是P1、P2参与;碰撞过程有热量产生;P所受摩擦力,其正压力为2mg

【考点定位】碰撞模型、动量守恒定律、能量守恒定律、弹性势能、摩擦生热。中档题

3.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M1=1 kg,车上另有一个质量为m=0.2 kg的小球,甲车静止在水平面上,乙车以v0=8 m/s的速度向甲车运动,乙车上有接收装置,总质量M2=2 kg,问:甲车至少以多大的水平速度将小球发射到乙车上,两车才不会相撞?(球最终停在乙车上)

【答案】25m/s

【解析】试题分析:要使两车恰好不相撞,则两车速度相等. 以M1、M2、m组成的系统为研究对象,水平方向动量守恒:

0M2v0M1mM2v共,解得v共5m/s

以小球与乙车组成的系统,水平方向动量守恒: M2v0mvmM2v共,解得

v25m/s

考点:考查了动量守恒定律的应用

【名师点睛】要使两车不相撞,甲车以最小的水平速度将小球发射到乙车上的临界条件是两车速度相同,以甲车、球与乙车为系统,由系统动量守恒列出等式,再以球与乙车为系统,由系统动量守恒列出等式,联立求解

4.如图的水平轨道中,AC段的中点B的正上方有一探测器,C处有一竖直挡板,物体P1沿轨道向右以速度v1与静止在A点的物体P2碰撞,并接合成复合体P,以此碰撞时刻为计时零点,探测器只在t1=2 s至t2=4 s内工作,已知P1、P2的质量都为m=1 kg,P与AC间的动摩擦因数为μ=0.1,AB段长L=4 m,g取10 m/s2,P1、P2和P均视为质点,P与挡板的碰撞为弹性碰撞。

(1)若v1=6 m/s,求P1、P2碰后瞬间的速度大小v和碰撞损失的动能ΔE;

(2)若P与挡板碰后,能在探测器的工作时间内通过B点,求v1的取值范围和P向左经过A点时的最大动能E。

【答案】(1)9J (2)10m/s<v1<14m/s 17J 【解析】

试题分析:(1)由于P1和P2发生弹性碰撞,据动量守恒定律有:

碰撞过程中损失的动能为:(2)

解法一:根据牛顿第二定律,P做匀减速直线运动,加速度a=设P1、P2碰撞后的共同速度为vA,则根据(1)问可得vA=v1/2 把P与挡板碰撞前后过程当作整体过程处理 经过时间t1,P运动过的路程为s1,则经过时间t2,P运动过的路程为s2,则联立以上各式,解得10m/s<v1<14m/s

v1的最大值为14m/s,此时碰撞后的结合体P有最大速度vA=7m/s 根据动能定理,代入数据,解得E=17J

解法二:从A点滑动到C点,再从C点滑动到A点的整个过程,P做的是匀减速直线。 设加速度大小为a,则a=μg=1m/s2

设经过时间t,P与挡板碰撞后经过B点,[学科网则: vB=v-at,

,v=v1/2

如果P能在探测器工作时间内通过B点,必须满足s1≤3L≤s2

若t=2s时经过B点,可得v1=\"14m/s\" 若t=4s时经过B点,可得v1=10m/s 则v1的取值范围为:10m/s<v1<14m/s v1=14m/s时,碰撞后的结合体P的最大速度为:根据动能定理,

代入数据,可得通过A点时的最大动能为:

考点:本题考查动量守恒定律、运动学关系和能量守恒定律

5.氡是一种放射性气体,主要来源于不合格的水泥、墙砖、石材等建筑材料.呼吸时氡气会随气体进入肺脏,氡衰变时放出射线,这种射线像小“炸弹”一样轰击肺细胞,使肺细胞受损,从而引发肺癌、白血病等.若有一静止的氡核

22286Rn发生衰变,放出一个速度

为v0、质量为m的粒子和一个质量为M的反冲核钋21884Po此过程动量守恒,若氡核发

生衰变时,释放的能量全部转化为粒子和钋核的动能。 (1)写衰变方程;

(2)求出反冲核钋的速度;(计算结果用题中字母表示)

(3)求出这一衰变过程中的质量亏损。(计算结果用题中字母表示)

2222184【答案】(1)86Rn84Po2He;(2)vmv0,负号表示方向与α离子速度方向M2Mmmv0相反;(3)m2Mc2

【解析】 【分析】 【详解】

(1)由质量数和核电荷数守恒定律可知,核反应方程式为

22286218Rn84Po+42He

(2)核反应过程动量守恒,以α离子的速度方向为正方向 由动量守恒定律得

mv0Mv0

解得vmv0,负号表示方向与α离子速度方向相反 M2Mmmv01212 Emv0Mv222M(3)衰变过程产生的能量

由爱因斯坦质能方程得

Emc2

解得

2Mmmv0m2Mc2

6.如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A点由静止出发绕O点下摆,当摆到最低点B时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A.求男演员落地点C与O点的水平距离s.已知男演员质量m1和女演员质量m2之比m1∶m2=2,秋千的质量不计,秋千的摆长为R,C点比O点低5R.

【答案】8R 【解析】 【分析】 【详解】

两演员一起从从A点摆到B点,只有重力做功,机械能守恒定律,设总质量为m,则

1mgRmv2

2女演员刚好能回到高处,机械能依然守恒:m2gR1m2v12 2女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒:

(m1m2)vm2v1m1v2③

根据题意:m1:m22 有以上四式解得:v222gR 接下来男演员做平抛运动:由4R因而:sv2t8R; 【点睛】

两演员一起从从A点摆到B点,只有重力做功,根据机械能守恒定律求出最低点速度;女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回到高处,可先根据机械能守恒定律求出女演员的返回速度,再根据动量守恒定律求出男演员平抛的初速度,然后根据平抛运动的知识求解男演员的水平分位移;本题关键分析求出两个演员的运动情况,然后对各个过程分别运用动量守恒定律和机械能守恒定律列式求解.

8R12gt,得t g2

7.甲图是我国自主研制的200mm离子电推进系统, 已经通过我国“实践九号”卫星空间飞行试验验证,有望在2015年全面应用于我国航天器.离子电推进系统的核心部件为离子推进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙原子P喷注入腔室C后,被电子枪G射出的电子碰撞而电离,成为带正电的氙离子.氙离子从腔室C中飘移过栅电极A的速度大小可忽略不计,在栅电极A、B之间的电场中加速,并从栅电极B喷出.在加速氙离子的过程中飞船获得推力. 已知栅电极A、B之间的电压为U,氙离子的质量为m、电荷量为q.

(1)将该离子推进器固定在地面上进行试验.求氙离子经A、B之间的电场加速后,通过栅电极B时的速度v的大小;

(2)配有该离子推进器的飞船的总质量为M,现需要对飞船运行方向作一次微调,即通过推进器短暂工作让飞船在与原速度垂直方向上获得一很小的速度Δv,此过程中可认为氙离子仍以第(1)中所求的速度通过栅电极B.推进器工作时飞船的总质量可视为不变.求推进器在此次工作过程中喷射的氙离子数目N.

(3)可以用离子推进器工作过程中产生的推力与A、B之间的电场对氙离子做功的功率的比值S来反映推进器工作情况.通过计算说明采取哪些措施可以增大S,并对增大S的实际意义说出你的看法. 【答案】(1)U或增大m的方法.

提高该比值意味着推进器消耗相同的功率可以获得更大的推力. 【解析】

试题分析:(1)根据动能定理有

(2)

(3)增大S可以通过减小q、

解得:

(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv 解得:

(3)设单位时间内通过栅电极A的氙离子数为n,在时间t内,离子推进器发射出的氙离子个数为Nnt,设氙离子受到的平均力为F,对时间t内的射出的氙离子运用动量定理,FtNmvntmv,F= nmv

根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小F=F= nmv 电场对氙离子做功的功率P= nqU 则

根据上式可知:增大S可以通过减小q、U或增大m的方法. 提高该比值意味着推进器消耗相同的功率可以获得更大的推力. (说明:其他说法合理均可得分) 考点:动量守恒定律;动能定理;牛顿定律.

8.如图所示,一轻质弹簧的一端固定在滑块B上,另一端与滑块C接触但未连接,该整体静止放在离地面高为H的光滑水平桌面上.现有一滑块A从光滑曲面上离桌面h高处由静止开始滑下,与滑块B发生碰撞并粘在一起压缩弹簧推动滑块C向前运动,经一段时间,滑块C脱离弹簧,继续在水平桌面上匀速运动一段后从桌面边缘飞出.已知

mAm,mB2m,mC3m,求:

(1)滑块A与滑块B碰撞结束瞬间的速度v; (2)被压缩弹簧的最大弹性势能EPmax; (3)滑块C落地点与桌面边缘的水平距离 s. 【答案】(1)v【解析】 【详解】

解:(1)滑块A从光滑曲面上h高处由静止开始滑下的过程,机械能守恒,设其滑到底面的速度为v1 ,由机械能守恒定律有:mAgh解之得:v12gh 滑块A与B碰撞的过程,A、B系统的动量守恒,碰撞结束瞬间具有共同速度设为v ,由动量守恒定律有:mAv1mAmBv 解之得:v11mgh2v12gh (2)Hh (3)33631mAv12 211v12gh 33(2)滑块A、B发生碰撞后与滑块C一起压缩弹簧,压缩的过程机械能守恒,被压缩弹簧的弹性势能最大时,滑块A、B、C速度相等,设为速度v2 由动量守恒定律有: mAv1mAmBmCv2 由机械能守恒定律有: EPmax12(mAmB)v2mAmBmCv2 21mgh 6解得被压缩弹簧的最大弹性势能:EPmax(3)被压缩弹簧再次恢复自然长度时,滑块C脱离弹簧,设滑块A、B的速度为v3,滑块

C的速度为v4,分别由动量守恒定律和机械能守恒定律有:

mAmBvmAmBv3mCv4

111mAmBv2mAmBv32mCv42 222解之得:v30,v412gh 3滑块C从桌面边缘飞出后做平抛运动:sv4t

H12gt 22Hh 3解之得滑块C落地点与桌面边缘的水平距离:s

9.(20分)如下图所示,光滑水平面MN左端挡板处有一弹射装置P,右端N与处于同一高度的水平传送带之间的距离可忽略,传送带水平部分NQ的长度L=8m,皮带轮逆时针转动带动传送带以v = 2m/s的速度匀速转动。MN上放置两个质量都为m = 1 kg的小物块A、B,它们与传送带间的动摩擦因数μ = 0.4。开始时A、B静止,A、B间压缩一轻质弹簧,其弹性势能Ep = 16 J。现解除锁定,弹开A、B,并迅速移走弹簧。取g=10m/s。

2

(1)求物块B被弹开时速度的大小;

(2)求物块B在传送带上向右滑行的最远距离及返回水平面MN时的速度vB′; (3)A与P相碰后静止。当物块B返回水平面MN后,A被P弹出,A、B相碰后粘接在一起向右滑动,要使A、B连接体恰好能到达Q端,求P对A做的功。 【答案】(1)vB4.0m/s(2)vB'2m/s(3)W=162 J 【解析】

试题分析:(1)(6分)解除锁定弹开AB过程中,系统机械能守恒:

Ep1212mvAmvB ……2分 22设向右为正方向,由动量守恒mvB mvA0 ……2分 解得vBvA4.0m/s ①……2分

(2)(6分)B滑上传送带做匀减速运动,当速度减为零时,滑动的距离最远。 由动能定理得 mgsM012mvB ……2分 2vB22m ……1分 ② 解得SM2g物块B在传送带上速度减为零后,受传送带给它的摩擦力,向左加速,若一直加速,则受

力和位移相同时,物块B滑回水平面MN时的速度vB'4m/s ,高于传送带速度,说明B滑回过程先加速到与传送带共速,后以2m/s的速度做匀速直线运动。……1分 物块B滑回水平面MN的速度vB'v2m/s ……2分

,碰撞后A、B共同(3)(8分)弹射装置将A弹出后与B碰撞,设碰撞前A的速度为vAmvB2mV 的速度为V,根据动量守恒定律,mvA

A、B恰好滑出平台Q端,由能量关系有

……2分

12mV22mgL ……2分⑤ 2 ……2分 ⑥ 设弹射装置对A做功为W,W=mvA由④⑤⑥ 解得W=162 J ……2分 考点:相对运动 动能定理 动量守恒

122

10.图中两根足够长的平行光滑导轨,相距1m水平放置,磁感应强度B=0.4T的匀强磁场竖直向上穿过整个导轨所在的空间.金属棒ab、cd质量分别为0.1kg和0.2kg,电阻分别为0.4Ω和0.2Ω,并排垂直横跨在导轨上.若两棒以相同的初速度3m/s向相反方向分开,不计导轨电阻,求:

(1)金属棒运动达到稳定后的ab棒的速度大小;

(2)金属棒运动达到稳定的过程中,回路上释放出的焦耳热; (3)金属棒运动达到稳定后,两棒间距离增加多少? 【答案】(1)1m/s (2)1.2J (3)1.5m 【解析】 【详解】

解:(1)ab、cd棒组成的系统动量守恒,最终具有共同速度v ,以水平向右为正方向,则

解得稳定后的ab棒的速度大小:

(2)根据能量转化与守恒定律,产生的焦耳热为:(3)对cd棒根据动量定理有:即:又

两棒间距离增加:

11.如图所示,在沙堆表面放置一长方形木块A,其上面再放一个质量为m=0.10kg的爆竹B,木块的质量为M=6.0kg.当爆竹爆炸时,因反冲作用使木块陷入沙中深度h=5cm,而木块所受的平均阻力为f=80N.若爆竹的火药质量以及空气阻力可忽略不计,g取10m/s2,求爆竹能上升的最大高度.

【答案】h60m 【解析】

试题分析:木块下陷过程中受到重力和阻力作用,根据动能定理可得

1(mgf)h0Mv12(1)

2爆竹爆炸过程中木块和爆竹组成的系统动量守恒,故有mv2Mv1(2)

2爆竹完后,爆竹做竖直上抛运动,故有v22gh(3)

联立三式可得:h600m

考点:考查了动量守恒定律,动能定理的应用

点评:基础题,比较简单,本题容易错误的地方为在A下降过程中容易将重力丢掉

12.如图所示,固定点O上系一长L=0.6 m的细绳,细绳的下端系一质量m=1.0 kg的小球(可视为质点),原来处于静止状态,球与平台的B点接触但对平台无压力,平台高h=0.80 m,一质量M=2.0 kg的物块开始静止在平台上的P点,现对物块M施予一水平向右的初速度v0,物块M沿粗糙平台自左向右运动到平台边缘B处与小球m发生正碰,碰后小球m在绳的约束下做圆周运动,经最高点A时,绳上的拉力恰好等于小球的重力,而物块M落在水平地面上的C点,其水平位移x=1.2 m,不计空气阻力,g=10 m/s2.

(1)求物块M碰撞后的速度大小;

(2)若平台表面与物块M间的动摩擦因数μ=0.5,物块M与小球的初始距离为x1=1.3 m,求物块M在P处的初速度大小. 【答案】(1)3.0m/s(2)7.0m/s 【解析】

试题分析:(1)碰后物块M做平抛运动,设其平抛运动的初速度为V

① (2分)

S = Vt ② (2分) 得:

=\" 3.0\" m/s ③ (2分)

(2)物块与小球在B处碰撞,设碰撞前物块的速度为V1,碰撞后小球的速度为V2,由动量守恒定律:

MV1= mV2+ MV ⑥ (2分)

碰后小球从B处运动到最高点A过程中机械能守恒,设小球在A点的速度为VA:

⑦(2分)

小球在最高点时依题给条件有:由⑦⑧解得:V2=\" 6.0\" m/s ⑨ (1分) 由③⑥⑨得:

=\" 6.0\" m/s ⑩ (1分)

⑧ (2分)

物块M从P运动到B处过程中,由动能定理:

⑾(2分)

解得:

=\" 7.0\" m/s ⑿ (2分)

考点:本题考查了平抛运动的规律、动量守恒定律、机械能守恒定律及动能定理的应用

因篇幅问题不能全部显示,请点此查看更多更全内容