您的当前位置:首页正文

高层建筑结构设计综述

2021-03-23 来源:九壹网


高层建筑结构设计综述

摘要: 当前,随着城市化发展以及建筑用地的紧张,高层建筑将日益增多,本文就高层建筑结构设计的特点和高层建筑结构体系等方面进行了探析。

关键词:高层建筑;结构设计

1高层建筑结构设计的意义及依据

1.1概念设计的意义

高层建筑能做到结构功能与外部条件一致,充分展现先进的设计,发挥结构的功能并取得与经济性的协调,更好地解决构造处理,用概念设计来判断计算设计的合理性。

1.2概念设计的依据

高层建筑结构总体系与各分体系的工作原理和力学性质,设计和构造处理原则,计算程序的力学模型和功能,吸取或不断积累的实践经验。

2高层建筑结构设计特点

2.1水平荷载成为决定因素

楼房自重和楼面使用荷载在竖构件中所引起的轴力和弯矩,与楼房高度的1次方成正比;而水平荷载对结构产生的倾覆力矩以及由此在竖构件中引起的轴力,与楼房高度的2次方成正比。对于一定高度的楼房来讲,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,则随着结构动力特性的不同而有较大幅度的变化。

2.2轴向变形不容忽视

高层建筑的竖向荷载很大,能够在柱中引起较大的轴向变形,会对连续梁弯矩产生影响,导致连续梁中间支座处的负弯矩值减小,跨中正弯矩值和端支座负弯矩值增大;还会对预制构件的下料长度产生影响,要求根据轴向变形计算值对下料长度进行调整。

2.3侧移成为控制指标

与较低的楼房不同,结构侧移已成为高楼结构设计中的关键因素。随着楼房高度的增加,水平荷载下的结构侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。

2.4抗震设计要求更高

有抗震设防的高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、大震不倒。

2.5结构延性是重要的设计指标

相对于较低的楼房而言,高楼结构更柔一些,在地震作用下的变形更大一些。为了使结构在进入塑性变形阶段后仍具有较强的变形能力,避免倒塌,尤其需要在构造上采取恰当的措施,以保证结构具有足够的延性。

3高层建筑的结构体系

3.1框架-剪力墙体系

当框架体系的强度和刚度不能满足要求时,往往需要在建筑平面的适当位置设置较大的剪力墙来代替部分框架,即采用框架-剪力墙体系。剪力墙增大了结构的侧向刚度,使建筑物的水平位移减小;同时框架承受的水平剪力显著降低,且内力沿竖向的分布趋于均匀。所以,框架-剪力墙体系的能建高度要大于框架体系。

3.2剪力墙体系

当受力主体结构全部由平面剪力墙构件组成时,即形成剪力墙体系。剪力墙体系的强度和刚度均比较高,有一定的延性,传力直接、均匀,整体性好,抗倒塌能力强,是一种良好的结构体系,能建高度大于框架或框架-剪力墙体系。

3.3筒体体系

凡采用筒体为抗侧力构件的结构体系称为筒体体系,包括单筒体、筒体-框架、筒中筒、多束筒等多种形式。筒体是一种空间受力构件,分为实腹筒和空腹筒两种类型。筒体体系具有很高的刚度和强度,各构件受力比较合理,抗风、抗震能力很强,往往应用于大跨度、大空间或超高层建筑。

4高层建筑结构分析

4.1高层建筑结构分析的基本假定

高层建筑结构是由竖向抗侧力构件(框架、剪力墙、筒体等)通过水平楼板连接构成的大型空间结构体系,要想完全精确地按照三维空间结构进行分析是十分困难的。各种实用的分析方法都需要对计算模型引入不同程度的简化。以下是常见的一些基本假定:

(1)弹性假定。目前,工程上使用的高层建筑结构分析方法均采用弹性的计

算方法。但是,在遭受地震或强台风作用时,高层建筑结构往往会产生较大的位移而出现裂缝,进入到弹塑性工作阶段。如果此时仍按弹性方法计算内力和位移,则不能反映结构的真实工作状态,而应按弹塑性动力分析方法进行设计。

(2)小变形假定。小变形假定也是各种方法普遍采用的基本假定。有不少研究人员对几何非线性问题(P-Δ效应)进行了研究。一般认为,当顶点水平位移Δ与建筑物高度H的比值Δ/H>1/500时,则P-Δ效应的影响就不能忽视。

(3)刚性楼板假定。许多高层建筑结构的分析方法均假定楼板在自身平面内的刚度无限大,而平面外的刚度则忽略不计。这一假定大大减少了结构位移的自由度,简化了计算方法,并为采用空间薄壁杆件理论计算筒体结构提供了条件。但是,对于竖向刚度有突变的结构,如楼板刚度较小、主要抗侧力构件间距过大或是层数较少等情况,则楼板变形的影响较大,特别是对结构底部和顶部各层内力和位移的影响更为明显。可对这些楼层的剪力作适当调整来考虑这种影响。

(4)计算图形的假定。高层建筑结构体系整体分析采用的计算图形主要是三维空间分析。二维协同分析并未考虑抗侧力构件的公共节点在楼面外的位移协调(竖向位移和转角的协调),而且忽略了抗侧力构件平面外的刚度和扭转刚度,对于具有明显空间工作性能的筒体结构也是不妥的。三维空间分析的普通杆单元每一节点有6个自由度;按符拉索夫薄壁杆理论分析的杆端节点还应考虑截面翘曲,有7个自由度。

4.2高层建筑结构静力分析方法

(1)框架-剪力墙结构。框架-剪力墙结构内力与位移计算的方法很多,大多采用连梁连续化假定。由剪力墙与框架水平位移或转角相等的位移协调条件,可以建立位移与外荷载之间的微分方程来求解。由于采用的未知量和考虑因素的不同,各种方法解答的具体形式也不相同。

框架-剪力墙的机算方法,通常是将结构转化为等效壁式框架,采用杆系结构矩阵位移法求解。

(2)剪力墙结构。剪力墙的受力特性与变形状态主要取决于剪力墙的开洞情况。剪力墙的类型不同,其截面应力分布也不同,计算内力与位移时需采用相应的计算方法。

剪力墙结构的机算方法是平面有限单元法,此法较为精确,而且适用于各类剪力墙。但由于其自由度较多,机时耗费较大,目前一般只用于特殊开洞墙、框支墙的过渡层等应力分布复杂的情况。

(3)筒体结构。按照对计算模型处理手法的不同,筒体结构的分析方法可分为3类:等效连续化方法、等效离散化方法和三维空间分析。等效连续化方法是将结构中的离散杆件作等效连续化处理。一种是只进行几何分布上的连续化,以便应用连续函数描述其内力;另一种是作几何和物理上的连续处理,将离散杆件代

换为等效的正交异性弹性薄板,以便应用分析弹性薄板的各种有效方法。

等效离散化方法是将连续的墙体离散为等效的杆件,以便应用适合杆系结构的方法来分析。这类方法包括核心筒的框架分析法和平面框架子结构法等。

比等效连续化和等效离散化更为精确的计算模型,是完全按三维空间结构来分析筒体结构体系,其中应用最广的是空间杆-薄壁杆系矩阵位移法。核心筒或剪力墙的墙肢采用符拉索夫薄壁杆件理论分析,每端节点有7个自由度,比空间杆增加了1个翘曲自由度,对应的内力是双弯矩。三维空间分析的精度较高,但其未知量较多,计算量较大,在不引入其他假定时,每一楼层的总自由度数为6Nc+7Nw(Nc、Nw为柱及墙肢数目)。通常均引入刚性楼板假定,并假定同一楼面上各薄壁柱的翘曲角相等,这样每一楼层的总自由度数降为3(Nc+Nw)+4,这是目前工程上采用最多的计算模型。

5抗震分析与设计在高层建筑的应用

在罕遇地震作用下,抗震结构都会部分进入塑性状态。为了满足大震作用下结构的功能要求,有必要研究和计算结构的弹塑性变形能力。我国现行抗震规范(GB50011-2001)要求高层建筑的抗震计算主要是在多遇地震作用下(小震),按反应谱理论计算地震作用,用弹性方法计算内力及位移。对于重要建筑或有特殊要求时,要用时程分析法补充计算,并进行罕遇地震作用下(大震)的变形验算。

在我国高层建筑的抗震分析与设计中常见的问题有以下几种:首先是高度问题,对于超高限建筑物,应当采取科学谨慎的态度。因为在地震力作用下,超高限建筑物的变形破坏性态会发生很大的变化,随着建筑物高度的增加,许多影响因素将发生质变,即有些参数本身超出了现有规范的适宜范围,如安全指标、延性要求、材料性能、荷载取值、力学模型选取等。其次是材料选用和结构体系的问题,在高层建筑中,我国150m以上的建筑,采用的三种主要结构体系(框-筒、筒中筒和框架-支撑),这些也是其他国家高层建筑采用的主要体系。第三是轴压比与短柱问题,在钢筋混凝土高层建筑结构中,往往为了控制柱的轴压比而使柱的截面很大,而柱的纵向钢筋却为构造配筋。柱的塑性变形能力小,则结构的延性就差,当遭遇地震时,耗散和吸收地震能量少,结构容易被破坏。第四,在某些烈度区采用了较低的抗震措施与构造措施,现在许多专家学者提出,现行的建筑结构设计安全度已不能适应国情的需要,认为我国“取用了可能是世界上最低的结构设计安全度”并主张“建筑结构设计的安全度水平应该大幅度提高”。有人主张在设防烈度下应该采用弹性设计,特别是高烈度区要有严格的抗震措施与抗震构造措施来保证结构的安全。

6结语

总而言之,随着建筑高度的不断提高,建筑结构的安全性和稳定性在此时显得更重要。设计人员应该不断加强自身学习,充分考虑影响建筑结构的各方面因素,根据建筑具体情况进行细致分析和研究,使建筑更安全更稳定。

因篇幅问题不能全部显示,请点此查看更多更全内容