万能公式是如何推导的?

发布网友 发布时间:2022-04-22 10:36

我来回答

2个回答

热心网友 时间:2023-11-01 22:06

由余弦定理:a^2+b^2-c^2-2abcosC=0

正弦定理:a/sinA=b/sinB=c/sinC=2R

得 (sinA)^2+(sinB)^2-(sinC)^2-2sinAsinBcosC=0

转化 1-(cosA)^2+1-(cosB)^2-[1-(cosC)^2]-2sinAsinBcosC=0

即 (cosA)^2+(cosB)^2-(cosC)^2+2sinAsinBcosC-1=0

又 cos(C)=-cos(A+B)=sinAsinB-cosAcosB

得 (cosA)^2+(cosB)^2-(cosC)^2+2cosC[cos(C)+cosAcosB]-1=0

(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

扩展资料:

设tan(A/2)=t

sinA=2t/(1+t^2) (A≠2kπ+π,k∈Z)

tanA=2t/(1-t^2) (A≠2kπ+π,k∈Z)

cosA=(1-t^2)/(1+t^2) (A≠2kπ+π k∈Z)

就是说sinA.tanA.cosA都可以用tan(A/2)来表示;当要求一串函数式最值的时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了。

热心网友 时间:2023-11-01 22:06

【释义】:应用公式sinα=[2tan(α/2)]/{1+[tan(α/2)]^2}   
cosα=[1-tan(α/2)^2]/{1+[tan(α/2)]^2}   
tanα=[2tan(α/2)]/{1-[tan(α/2)]^2}   
将sinα、cosα、tanα代换成tan(α/2)的式子,这种代换称为万能置换。   
【推导】:(字符版)   
sinα=2sin(α/2)cos(α/2)=[2sin(α/2)cos(α/2)]/[sin(α/2)^2+cos(α/2)^2]=[2tan(α/2)]/[1+(tanα/2)^2]   cosα=[cos(α/2)^2-sin(α/2)^2]=[cos(α/2)^2-sin(α/2)^2]/[sin(a/2)^2+cos(a/2)^2]=[1-tan(α/2)^2]/[1+(tanα/2)^2]   tanα=tan[2*(α/2)]=2tan(α/2)/[1-tan(α/2)^2]

参考资料:http://ke.baidu.com/view/736.htm

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com