发布网友 发布时间:2022-04-22 06:29
共1个回答
懂视网 时间:2022-09-09 01:32
1、前处理。根据实际问题定义求解模型,包括以下几个方面:
(1) 定义问题的几何区域:根据实际问题近似确定求解域的物理性质和几何区域。
(2) 定义单元类型:
(3) 定义单元的材料属性:
(4) 定义单元的几何属性,如长度、面积等;
(5) 定义单元的连通性:
(6) 定义单元的基函数;
(7) 定义边界条件:
(8) 定义载荷。
2、总装求解: 将单元总装成整个离散域的总矩阵方程(联合方程组)。总装是在相邻单元结点进行。状态变量及其导数(如果可能)连续性建立在结点处。联立方程组的求解可用直接法、迭代法。求解结果是单元结点处状态变量的近似值。
3、后处理: 对所求出的解根据有关准则进行分析和评价。后处理使用户能简便提取信息,了解计算结果。
热心网友 时间:2023-08-23 05:28
有限元分析是使用有限元方法来分析静态或动态的物理物体或物理系统。在这种方法中一个物体或系统被分解为由多个相互联结的、简单、的点组成的几何模型。在这种方法中这些的点的数量是有限的,因此被称为有限元。由实际的物理模型中推导出来得平衡方程式被使用到每个点上,由此产生了一个方程组。这个方程组可以用线性代数的方法来求解。有限元分析 的精确度无法无限提高。元的数目到达一定高度后解的精确度不再提高,只有计算时间不断提高。
有限元分析法(FEA)已应用得非常广泛,现已成为年创收达数十亿美元的相关产业的基础。即使是很复杂的应力问题的数值解,用有限元分析的常规方法就能得到。此方法是如此的重要,以至于即便像这些只对材料力学作入门性论述的模块,也应该略述其主要特点。 不管有限元法是如何的卓有成效,当你应用此法及类似的方法时,计算机解的缺点必须牢记在心头:这些解不一定能揭示诸如材料性能、几何特征等重要的变量是如何影响应力的。一旦输入数据有误,结果就会大相径庭,而分析者却难以觉察。所以理论建模最重要的作用可能是使设计者的直觉变得敏锐。有限元程序的用户应该为此目标部署设计策略,以尽可能多的封闭解和实验分析作为计算机仿真的补充。 与现代微机上许多字处理和电子制表软件包相比,有限元的程序不那么复杂。然而,这些程序的复杂程度依然使大部分用户无法有效地编写自己所需的程序。可以买到一些预先编好的商用程序1,其价格范围宽,从微机到超级计算机都可兼容。但有特定需求的用户也不必对程序的开发望而生畏,你会发现,从诸如齐凯维奇(Zienkiewicz2)等的教材中提供的程序资源可作为有用的起点。大部分有限元软件是用Fortran语言编写的,但诸如felt等某些更新的程序用的是C语言或其它更时新的程序语言。
在实践中,有限元分析法通常由三个主要步骤组成: 1、预处理:用户需建立物体待分析部分的模型,在此模型中,该部分的几何形状被分割成若干个离散的子区域——或称为“单元”。各单元在一些称为“结点”的离散点上相互连接。这些结点中有的有固定的位移,而其余的有给定的载荷。准备这样的模型可能极其耗费时间,所以商用程序之间的相互竞争就在于:如何用最友好的图形化界面的“预处理模块”,来帮助用户完成这项繁琐乏味的工作。有些预处理模块作为计算机化的画图和设计过程的组成部分,可在先前存在的CAD文件中覆盖网格,因而可以方便地完成有限元分析。 2、分析:把预处理模块准备好的数据输入到有限元程序中,从而构成并求解用线性或非线性代数方程表示的系统
u和f分别为各结点的位移和作用的外力。矩阵K的形式取决于求解问题的类3、分析的早期,用户需仔细地研读程序运算后产生的大量数字,即 型,本模块将概述桁架与线弹性体应力分析的方法。商用程序可能带有非常大的单元库,不同类型的单元适用于范围广泛的各类问题。有限元法的主要优点之一就是:许多不同类型的问题都可用相同的程序来处理,区别仅在于从单元库中指定适合于不同问题的单元类型。