苏教版初二数学下册知识点

发布网友 发布时间:2022-04-22 17:16

我来回答

3个回答

热心网友 时间:2023-10-22 20:09

第一章 一次函数
1 函数的定义,函数的定义域、值域、表达式,函数的图像
2 一次函数和正比例函数,包括他们的表达式、增减性、图像
3 从函数的观点看方程、方程组和不等式
第二章 数据的描述
1 了解几种常见的统计图表:条形图、扇形图、折线图、复合条形图、直方图,了解各种图表的特点
条形图特点:
(1)能够显示出每组中的具体数据;
(2)易于比较数据间的差别
扇形图的特点:
(1)用扇形的面积来表示部分在总体中所占的百分比;
(2)易于显示每组数据相对与总数的大小
折线图的特点;
易于显示数据的变化趋势
直方图的特点:
(1)能够显示各组频数分布的情况;
(2)易于显示各组之间频数的差别
2 会用各种统计图表示出一些实际的问题
第三章 全等三角形
1 全等三角形的性质:
全等三角形的对应边、对应角相等
2 全等三角形的判定
边边边、边角边、角边角、角角边、直角三角形的HL定理
3 角平分线的性质
角平分线上的点到角的两边的距离相等;
到角的两边距离相等的点在角的平分线上。
第四章 轴对称
1 轴对称图形和关于直线对称的两个图形
2 轴对称的性质
轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;
线段垂直平分线上的点到线段两个端点的距离相等;
到线段两个端点距离相等的点在这条线段的垂直平分线上
3 用坐标表示轴对称
点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).
4 等腰三角形
等腰三角形的两个底角相等;(等边对等角)
等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)
一个三角形的两个相等的角所对的边也相等。(等角对等边)
5 等边三角形的性质和判定
等边三角形的三个内角都相等,都等于60度;
三个角都相等的三角形是等边三角形;
有一个角是60度的等腰三角形是等边三角形;
推论:
直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半。
在三角形中,大角对大边,大边对大角。

第五章 整式
1 整式定义、同类项及其合并
2 整式的加减
3 整式的乘法
(1)同底数幂的乘法:
(2)幂的乘方
(3)积的乘方
(4)整式的乘法
4 乘法公式
(1)平方差公式
(2)完全平方公式
5 整式的除法
(1)同底数幂的除法
(2)整式的除法
6 因式分解
(1)提共因式法
(2)公式法
(3)十字相乘法

初二下册知识点
第一章 分式
1 分式及其基本性质
分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变
2 分式的运算
(1)分式的乘除
乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母
除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
(2) 分式的加减
加减法法则:同分母分式相加减,分母不变,把分子相加减;
异分母分式相加减,先通分,变为同分母的分式,再加减
3 整数指数幂的加减乘除法
4 分式方程及其解法
第二章 反比例函数
1 反比例函数的表达式、图像、性质
图像:双曲线
表达式:y=k/x(k不为0)
性质:两支的增减性相同;
2 反比例函数在实际问题中的应用
第三章 勾股定理
1 勾股定理:直角三角形的两个直角边的平方和等于斜边的平方
2 勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。
第四章 四边形
1 平行四边形
性质:对边相等;对角相等;对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
一组对边平行而且相等的四边形是平行四边形。
推论:三角形的中位线平行第三边,并且等于第三边的一半。
2 特殊的平行四边形:矩形、菱形、正方形
(1) 矩形
性质:矩形的四个角都是直角;
矩形的对角线相等;
矩形具有平行四边形的所有性质
判定: 有一个角是直角的平行四边形是矩形;
对角线相等的平行四边形是矩形;
推论: 直角三角形斜边的中线等于斜边的一半。
(2) 菱形
性质:菱形的四条边都相等;
菱形的对角线互相垂直,并且每一条对角线平分一组对角;
菱形具有平行四边形的一切性质
判定:有一组邻边相等的平行四边形是菱形;
对角线互相垂直的平行四边形是菱形;
四边相等的四边形是菱形。
(3) 正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。
3 梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底边上的两个角相等;
等腰梯形的两条对角线相等;
同一个底上的两个角相等的梯形是等腰梯形。
第五章 数据的分析
加权平均数、中位数、众数、极差、方差

热心网友 时间:2023-10-22 20:09

一元一次不等式。相似三角形。黄金比例。分式方程。反比例函数。
1.分式的有关概念

设A、B表示两个整式.如果B中含有字母,式子 就叫做分式.注意分母B的值不能为零,否则分式没有意义

分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简

2、分式的基本性质

(M为不等于零的整式)

3.分式的运算 (分式的运算法则与分数的运算法则类似).

(异分母相加,先通分);

4.零指数

5.负整数指数

注意正整数幂的运算性质

可以推广到整数指数幂,也就是上述等式中的m、 n可以是O或负整数.

6、解分式方程的一般步骤:在方程的两边都乘以最简公分母,约去分母,化为整式方程.解这个整式方程..验根,即把整式方程的根代入最简公分母,看结果是不是零,若结果不是0,说明此根是原方程的根;若结果是0,说明此根是原方程的增根,必须舍去.

7、列分式方程解应用题的一般步骤:

(1)审清题意;(2)设未知数(要有单位);(3)根据题目中的数量关系列出式子,找出相等关系,列出方程;(4)解方程,并验根,还要看方程的解是否符合题意;(5)写出答案(要有单位)。

正比例、反比例、一次函数

第一象限(+,+),第二象限(-,+)第三象限(-、-)第四象限(+,-);

x轴上的点的纵坐标等于0,反过来,纵坐标等于0的点都在x轴上,y轴上的点的横坐标等于0,反过来,横坐标等于0的点都在y轴上,

若点在第一、三象限角平分线上,它的横坐标等于纵坐标,若点在第二,四象限角平分线上,它的横坐标与纵坐标互为相反数;

若两个点关于x轴对称,横坐标相等,纵坐标互为相反数;若两个点关于y轴对称,纵坐标相等,横坐标互为相反数;若两个点关于原点对称,横坐标、纵坐标都是互为相反数。

1、 一次函数,正比例函数的定义

(1)如果y=kx+b(k,b为常数,且k≠0),那么y叫做x的一次函数。

(2)当b=0时,一次函数y=kx+b即为y=kx(k≠0).这时,y叫做x的正比例函数。

注:正比例函数是特殊的一次函数,一次函数包含正比例函数。

2、正比例函数的图象与性质

(1)正比例函数y=kx(k≠0)的图象是过(0,0)(1,k)的一条直线。

(2)当k>0时 y随x的增大而增大 直线y=kx经过一、三象限 从左到右直线上升。

当k<0时 y随x的增大而减少 直线y=kx经过二、四象限 从左到右直线下降。

3、一次函数的图象与性质

(1) 一次函数y=kx+b(k≠0)的图象是过(0,b)(- ,0)的一条直线。

注:(0,b)是直线与y轴交点坐标,(-,0)是直线与x轴交点坐标.

(2)当k>0时 y随x的增大而增大 直线y=kx+b(k≠0)是上升的

当k<0时 y随x的增大而减少 直线y=kx+b(k≠0)是下降的

4、一次函数y=kx+b(k≠0, k b 为常数)中k 、b的符号对图象的影响

(1)k>0, b>0 直线经过一、二、三象限

(2)k>0, b<0 直线经过一、三、四象限

(3)k<0, b>0 直线经过一、二、四象限

(4)k<0, b<0 直线经过二、三、四象限

5、对一次函数y=kx+b的系数k, b 的理解。

(1)k(k≠0)相同,b不同时的所有直线平行,即直线;直线(均不为零,为常数)

(2)k(k≠0)不同,b相同时的所有直线恒过y轴上一定点(0,b),例如:直线y=2x+3, y=-2x+3, 均交于y轴一点(0,3)

6、直线的平移:所谓平移,就是将一条直线向左、向右(或向上,向下)平行移动,平移得到的直线k不变,直线沿y轴平移多少个单位,可由公式得到,其中b1,b2是两直线与y轴交点的纵坐标,直线沿x轴平移多少个单位,可由公式求得,其中x1,x2是由两直线与x轴交点的横坐标。

7、直线y=kx+b(k≠0)与方程、不等式的联系

(1)一条直线y=kx+b(k≠0)就是一个关于y的二元一次方程

(2)求两直线的交点,就是解关于x,y的方程组

(3)若y>0则kx+b>0。若y<0,则kx+b<0

(4)一元一次不等式,y1≤kx+b≤y2( y1,y2都是已知数,且y1<y2)的解集就是直线y=kx+b上满足y1≤y≤y2那条线段所对应的自变量的取值范围。

(5)一元一次不等式kx+b≤y0(或kx+b≥y0)( y0为已知数)的解集就是直线y=kx+b上满足y≤y0(或y≥y0)那条射线所对应的自变量的取范围。

8、确定正比例函数与一次函数的解析式应具备的条件

(1)由于比例函数y=kx(k≠0)中只有一个待定系数k,故只要一个条件(如一对x,y的值或一个点)就可求得k的值。

(2) 一次函数y=kx+b中有两个待定系数k,b,需要两个的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点,或两对x,y的值。

9、反比例函数

(1) 反比例函数及其图象

如果,那么,y是x的反比例函数。

反比例函数的图象是双曲线,它有两个分支,可用描点法画出反比例函数的图象

(2)反比例函数的性质

当K>0时,图象的两个分支分别在一、三象限内,在每个象限内, y随x的增大而减小;

当K<0时,图象的两个分支分别在二、四象限内,在每个象限内,y随x的增大而增大。

(3)由于比例函数中只有一个待定系数k,故只要一个条件(如一对x,y的值或一个点)就可求得k的值。

相似三角形的判定方法:

(1)若DE‖BC(A型和X型)则△ADE∽△ABC

(2)射影定理 若CD为Rt△ABC斜边上的高(双直角图形)

解直角三角形

热心网友 时间:2023-10-22 20:10

到百度文库去搜

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com