关于筛子概率问题

发布网友 发布时间:2022-04-24 01:14

我来回答

6个回答

热心网友 时间:2023-10-17 16:33

总共相当于掷15个的骰子。

因为每个骰子至少掷出1,所以总和至少是15 * 1 = 15点;又因为每 个骰子至多掷出6,所以总和至多是15 * 6 = 90点。
因此,掷出总和为15—90的概率是100%,不是么?

至于求点数总和为15—90的概率各是多少,即是求同分布的15个离散随机变量的和的分布列。计算比较繁杂,可以用母函数的方法来做。
设X_i是第i个骰子投出的点数,知P(X_i = k) = 1/6(其中k = 1,2,3,4,5,6)。所有的X_i同分布。
记Y = X_1 + X_2 + … + X_n,则要求P(Y = k)。
而X_i的母函数是
g_i(t) = (1/6)(t + t^2 + t^3 + t^4 + t^5 + t^6),
从而由母函数的性质,Y的母函数是其乘积
g_Y(t) = ∏g_i(t)
= (1/6)^15 * (t + t^2 + t^3 + t^4 + t^5 + t^6)^15
展开计算每一项系数就可以得到Y的概率分布。

我用计算机展开得到的g_Y(t)为
(t^15 + 15 t^16 + 120 t^17 + 680 t^18 + 3060 t^19 + 11628 t^20 + 38745 t^21 + 116055 t^22 + 317970 t^23 + 806990 t^24 + 1915356 t^25 + 4282980 t^26 + 90705 t^27 + 18315675 t^28 + 35332650 t^29 + 65372310 t^30 + 116325135 t^31 + 199542465 t^32 + 330639445 t^33 + 530137275 t^34 + 8237470 t^35 + 1242073550 t^36 + 1819496655 t^37 + 2592085185 t^38 + 3594444165 t^39 + 4855600971 t^40 + 6394206690 t^41 + 8213538270 t^42 + 10296957375 t^43 + 12604578705 t^44 + 15071885925 t^45 + 17610885675 t^46 + 20114111295 t^47 + 22461407505 t^48 + 24529001175 t^49 + 261999377 t^50 + 27374880105 t^51 + 27981391815 t^52 + 27981391815 t^53 + 27374880105 t^54 + 261999377 t^55 + 24529001175 t^56 + 22461407505 t^57 + 20114111295 t^58 + 17610885675 t^59 + 15071885925 t^60 + 12604578705 t^61 + 10296957375 t^62 + 8213538270 t^63 + 6394206690 t^ + 4855600971 t^65 + 3594444165 t^66 + 2592085185 t^67 + 1819496655 t^68 + 1242073550 t^69 + 8237470 t^70 + 530137275 t^71 + 330639445 t^72 + 199542465 t^73 + 116325135 t^74 + 65372310 t^75 + 35332650 t^76 + 18315675 t^77 + 90705 t^78 + 4282980 t^79 + 1915356 t^80 + 806990 t^81 + 317970 t^82 + 116055 t^83 + 38745 t^84 + 11628 t^85 + 3060 t^86 + 680 t^87 + 120 t^88 + 15 t^ + t^90) / 470184984576

所以由各项系数知,
P(Y = 15) = 1 / 470184984576,
P(Y = 16) = 15 / 470184984576,
……
P(Y = 50) = 261999377 / 470184984576,
……
P(Y = 90) = 1 / 470184984576。

热心网友 时间:2023-10-17 16:33

反正跟一次掷15个色子概率一样
我等人算...

热心网友 时间:2023-10-17 16:34

点数为15的概率为1/90.

热心网友 时间:2023-10-17 16:34

我只能告诉你出现15点和90点的概率是6的负5次方,出现16点和点的概率是6的负4次方,其他的我就不算了,还有你应该发现了规律:15~90出现的概率有一个对称关系,就是15的和90的相等,16的和的相等....

热心网友 时间:2023-10-17 16:35

正如一楼所说:"反正跟一次掷15个色子概率一样"
我也这么认为,不过,不管怎么投比15小的和比90大的结果都不存在,也就是说,总的概率是1,就把他看成二项式展开(5/6+1/6)^15,每一项就是对应的结果,呵呵

热心网友 时间:2023-10-17 16:36

用排列的思想去做
每个骰子掷出去出现1~6的概率都是1/6
所以要得到15必须所有的骰子都掷1概率就是(1/6)的15次方
所以要得到90必须所有的骰子都掷6概率也是(1/6)的15次方
要得到16就要求14个掷1,1个掷2,掷出2可能是第1次也可能第2,3,4,5次,所以它的概率为[(1/6)的15次方*5]
要得到17就要求(14个掷1,1个掷3)或(13个掷1,2个掷2),所以它的概率就是
[(1/6)的15次方*5]+[(1/6)的15次方*(1+2+3+4+5)]
……

热心网友 时间:2023-10-17 16:33

总共相当于掷15个的骰子。

因为每个骰子至少掷出1,所以总和至少是15 * 1 = 15点;又因为每 个骰子至多掷出6,所以总和至多是15 * 6 = 90点。
因此,掷出总和为15—90的概率是100%,不是么?

至于求点数总和为15—90的概率各是多少,即是求同分布的15个离散随机变量的和的分布列。计算比较繁杂,可以用母函数的方法来做。
设X_i是第i个骰子投出的点数,知P(X_i = k) = 1/6(其中k = 1,2,3,4,5,6)。所有的X_i同分布。
记Y = X_1 + X_2 + … + X_n,则要求P(Y = k)。
而X_i的母函数是
g_i(t) = (1/6)(t + t^2 + t^3 + t^4 + t^5 + t^6),
从而由母函数的性质,Y的母函数是其乘积
g_Y(t) = ∏g_i(t)
= (1/6)^15 * (t + t^2 + t^3 + t^4 + t^5 + t^6)^15
展开计算每一项系数就可以得到Y的概率分布。

我用计算机展开得到的g_Y(t)为
(t^15 + 15 t^16 + 120 t^17 + 680 t^18 + 3060 t^19 + 11628 t^20 + 38745 t^21 + 116055 t^22 + 317970 t^23 + 806990 t^24 + 1915356 t^25 + 4282980 t^26 + 90705 t^27 + 18315675 t^28 + 35332650 t^29 + 65372310 t^30 + 116325135 t^31 + 199542465 t^32 + 330639445 t^33 + 530137275 t^34 + 8237470 t^35 + 1242073550 t^36 + 1819496655 t^37 + 2592085185 t^38 + 3594444165 t^39 + 4855600971 t^40 + 6394206690 t^41 + 8213538270 t^42 + 10296957375 t^43 + 12604578705 t^44 + 15071885925 t^45 + 17610885675 t^46 + 20114111295 t^47 + 22461407505 t^48 + 24529001175 t^49 + 261999377 t^50 + 27374880105 t^51 + 27981391815 t^52 + 27981391815 t^53 + 27374880105 t^54 + 261999377 t^55 + 24529001175 t^56 + 22461407505 t^57 + 20114111295 t^58 + 17610885675 t^59 + 15071885925 t^60 + 12604578705 t^61 + 10296957375 t^62 + 8213538270 t^63 + 6394206690 t^ + 4855600971 t^65 + 3594444165 t^66 + 2592085185 t^67 + 1819496655 t^68 + 1242073550 t^69 + 8237470 t^70 + 530137275 t^71 + 330639445 t^72 + 199542465 t^73 + 116325135 t^74 + 65372310 t^75 + 35332650 t^76 + 18315675 t^77 + 90705 t^78 + 4282980 t^79 + 1915356 t^80 + 806990 t^81 + 317970 t^82 + 116055 t^83 + 38745 t^84 + 11628 t^85 + 3060 t^86 + 680 t^87 + 120 t^88 + 15 t^ + t^90) / 470184984576

所以由各项系数知,
P(Y = 15) = 1 / 470184984576,
P(Y = 16) = 15 / 470184984576,
……
P(Y = 50) = 261999377 / 470184984576,
……
P(Y = 90) = 1 / 470184984576。

热心网友 时间:2023-10-17 16:33

反正跟一次掷15个色子概率一样
我等人算...

热心网友 时间:2023-10-17 16:34

点数为15的概率为1/90.

热心网友 时间:2023-10-17 16:34

我只能告诉你出现15点和90点的概率是6的负5次方,出现16点和点的概率是6的负4次方,其他的我就不算了,还有你应该发现了规律:15~90出现的概率有一个对称关系,就是15的和90的相等,16的和的相等....

热心网友 时间:2023-10-17 16:35

正如一楼所说:"反正跟一次掷15个色子概率一样"
我也这么认为,不过,不管怎么投比15小的和比90大的结果都不存在,也就是说,总的概率是1,就把他看成二项式展开(5/6+1/6)^15,每一项就是对应的结果,呵呵

热心网友 时间:2023-10-17 16:36

用排列的思想去做
每个骰子掷出去出现1~6的概率都是1/6
所以要得到15必须所有的骰子都掷1概率就是(1/6)的15次方
所以要得到90必须所有的骰子都掷6概率也是(1/6)的15次方
要得到16就要求14个掷1,1个掷2,掷出2可能是第1次也可能第2,3,4,5次,所以它的概率为[(1/6)的15次方*5]
要得到17就要求(14个掷1,1个掷3)或(13个掷1,2个掷2),所以它的概率就是
[(1/6)的15次方*5]+[(1/6)的15次方*(1+2+3+4+5)]
……

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com