圆周率的来历。。

发布网友 发布时间:2022-04-19 12:56

我来回答

6个回答

热心网友 时间:2022-05-20 00:59

祖冲之在数学上的杰出成就,是关于圆周率的计算。

在秦汉以前,通常以"径一周三"做为圆周率,这就是"古率"。后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过到最后还是没有统一到底是多少。


到了三国的时候,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来*近圆周长。祖冲之在前人成就的基础上,经过刻苦钻研和反复的演算终于得出了现在的圆周率。

圆的周长与直径之比是一个常数,通常称为圆周率。通常用希腊字母π 来表示。1706年,英国人琼斯首次创用π 代表圆周率。他的符号并未立刻被采用,经过欧拉予以提倡,才渐渐的推广开来。

在古代,实际上长期使用 π=3这个数值,巴比伦、印度、中国都是这样的,到公元前2世纪,中国的《周髀算经》里已有周三径一的记载。东汉的数学家又将 π值改为3.16。

直正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他专门写了一篇论文《圆的度量》,用几何方法证明了圆周率与圆直径之比小于22/7而大于223/71 。这是第一次在科学中创用上、下界来确定近似值。

热心网友 时间:2022-05-20 02:17

祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来*近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取22/7为约率,取355/133为密率,其中355/133取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.

热心网友 时间:2022-05-20 03:52

付费内容限时免费查看回答您好,很高兴为您解答问题。

祖冲之与圆周率的故事

祖冲之自幼喜欢数学,在父亲和祖父的指导下学习了很多数学方面的知识。一次,父亲从书架上给他拿了一本《周髀算经》,这是一本西汉或更早的著名的数学书。书中讲到圆的周长为直径的3倍。于是,他就用绳子量车轮,进行验证,结果却发现车轮的周长比车轮直径的3倍还多一点。他又去量盆子,结果还是一样。他想圆周并不完全是直径的3倍,那么圆周究竟比3个直径长多少呢?在汉以前,中国一般用三作为圆周率数值,即“周三径一”。这在计算圆的周长和面积时,误差很大。

祖冲之在刘徽创造的用“割圆术”求圆周率的科学方法基础上,运用开密法,经过反复演算,求出圆周率为:3.1415927>π>3.1415926。这是当时世界上最精确的数值,他也成为世界上第一个把圆周率的准确数值计算到小数点以后第7位数字的人。直到1000多年后,这个纪录才被欧洲人打破。圆周率的计算,是祖冲之在数学上的一项杰出贡献,有外国数学史家把π叫做“祖率”。

希望能帮到您。麻烦您给个赞谢谢!可以关注小王老师,方便下次联系。最*台推出了语音和视频功能,您可以试试,是不错的选择哦!

提问谢谢

回答不客气,希望能帮到您。麻烦您给个赞谢谢!可以关注小王老师,方便下次联系。最*台推出了语音和视频功能,您可以试试,是不错的选择哦!

热心网友 时间:2022-05-20 05:43

祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来*近圆周长.刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取22/7为约率,取355/133为密率,其中355/133取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.

热心网友 时间:2022-05-20 07:51

圆周率可能算错了,有圆周率就有直径率,圆周率和直径率可算100%的准确率。

热心网友 时间:2022-05-20 10:32

你到百度来搜吗!哪里有

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com