hadoop,storm和spark的区别,比较

发布网友 发布时间:2022-03-24 14:25

我来回答

2个回答

热心网友 时间:2022-03-24 15:55

一、hadoop、Storm该选哪一个?

为了区别hadoop和Storm,该部分将回答如下问题:
1.hadoop、Storm各是什么运算
2.Storm为什么被称之为流式计算系统
3.hadoop适合什么场景,什么情况下使用hadoop
4.什么是吞吐量


首先整体认识:Hadoop是级计算,进行计算时,数据在磁盘上,需要读写磁盘;Storm是内存级计算,数据直接通过网络导入内存。读写内存比读写磁盘速度快n个数量级。根据Harvard CS61课件,磁盘访问延迟约为内存访问延迟的75000倍。所以Storm更快。


注释:
1. 延时 , 指数据从产生到运算产生结果的时间,“快”应该主要指这个。
2. 吞吐, 指系统单位时间处理的数据量。


storm的网络直传、内存计算,其时延必然比hadoop的通过hdfs传输低得多;当计算模型比较适合流式时,storm的流式处理,省去了批处理的收集数据的时间;因为storm是服务型的作业,也省去了作业调度的时延。所以从时延上来看,storm要快于hadoop。


从原理角度来讲:

热心网友 时间:2022-03-24 17:13

Storm优势就在于Storm是实时的连续性的分布式的计算框架,一旦运行起来,除非你将它杀掉,否则它一直处理计算或等待计算的状态.Spark和hadoop都做不到.
当然它们各自都有其应用场景,各有各的优势.可以配合使用.
下面我转一份别人的资料,讲的很清楚.
Storm与Spark、Hadoop这三种框架,各有各的优点,每个框架都有自己的最佳应用场景。
所以,在不同的应用场景下,应该选择不同的框架。
Storm是最佳的流式计算框架,Storm由Java和Clojure写成,Storm的优点是全内存计算,所以它的定位是分布式实时计算系统,按照Storm作者的说法,Storm对于实时计算的意义类似于Hadoop对于批处理的意义。
Storm的适用场景:
1)流数据处理
Storm可以用来处理源源不断流进来的消息,处理之后将结果写入到某个存储中去。
2)分布式RPC。由于Storm的处理组件是分布式的,而且处理延迟极低,所以可以作为一个通用的分布式RPC框架来使用。
SparkSpark是一个基于内存计算的开源集群计算系统,目的是更快速的进行数据分析。Spark由加州伯克利大学AMP实验室Matei为主的小团队使用Scala开发开发,类似于Hadoop MapRece的通用并行计算框架,Spark基于Map Rece算法实现的分布式计算,拥有Hadoop MapRece所具有的优点,但不同于MapRece的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的Map Rece的算法。
Spark的适用场景:
1)多次操作特定数据集的应用场合
Spark是基于内存的迭代计算框架,适用于需要多次操作特定数据集的应用场合。需要反复操作的次数越多,所需读取的数据量越大,受益越大,数据量小但是计算密集度较大的场合,受益就相对较小。
2)粗粒度更新状态的应用
由于RDD的特性,Spark不适用那种异步细粒度更新状态的应用,例如Web服务的存储或者是增量的Web爬虫和索引。就是对于那种增量修改的应用模型不适合。
总的来说Spark的适用面比较广泛且比较通用。
Hadoop是实现了MapRece的思想,将数据切片计算来处理大量的离线数据数据。Hadoop处理的数据必须是已经存放在HDFS上或者类似HBase的数据库中,所以Hadoop实现的时候是通过移动计算到这些存放数据的机器上来提高效率。
Hadoop的适用场景:
1)海量数据的离线分析处理
2)大规模Web信息搜索
3)数据密集型并行计算
简单来说:
Hadoop适合于离线的批量数据处理适用于对实时性要求极低的场景
Storm适合于实时流数据处理,实时性方面做得极好
Spark是内存分布式计算框架,试图吞并Hadoop的Map-Rece批处理框架和Storm的流处理框架,但是Spark已经做得很不错了,批处理方面性能优于Map-Rece,但是流处理目前还是弱于Storm,产品仍在改进之中

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com