三阶矩阵的伴随矩阵怎么求?

发布网友 发布时间:2022-04-27 00:29

我来回答

4个回答

热心网友 时间:2022-06-21 17:50

用代数余子式或者公式A的伴随矩阵=|A|*A^-1
A^*=

1    -2     7
0     1    -2
0     0     1

首先介绍 “代数余子式” 这个概念: 

设 D 是一个n阶行列式,aij (i、j 为下角标)是D中第i行第j列上的元素。在D中 

把aij所在的第i行和第j列划去后,剩下的 n-1 阶行列式叫做元素 aij 的“余子式”,记作 Mij。把 Aij = (-1)^(i+j) *

Mij 称作元素 aij 的“代数余子式”。 (符号 ^ 表示乘方运算)

首先求出 各代数余子式
A11 = (-1)^2 * (a22 * a33 - a23 * a32) = a22 * a33 - a23 * a32
A12 = (-1)^3 * (a21 * a33 - a23 * a31) = -a21 * a33 + a23 * a31
A13 = (-1)^4 * (a21 * a32 - a22 * a31) = a21 * a32 - a22 * a31
A21 = (-1)^3 * (a12 * a33 - a13 * a32) = -a12 * a33 + a13 * a32
……
A33 = (-1)^6 * (a11 * a22 - a12 * a21) = a11 * a22 - a12 * a21

然后伴随矩阵就是
A11 A21 A31
A12 A22 A32
A13 A23 A33 

伴随矩阵=
1    -2    -1
0     1     2
0     0     1

扩展资料

① 当矩阵是大于等于二阶时:

主对角元素是将原矩阵该元素所在行列去掉再求行列式。

非主对角元素 是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以(-1)^(x+y) x,y为该元素的共轭位置的元素的行和列的序号,序号从1开始的。

主对角元素实际上是非主对角元素的特殊情况,因为x=y,所以(-1)^(x+y)=(-1)^(2x)=1,一直是正数,没必要考虑主对角元素的符号问题。

常用的可以记一下:

a b

—— 1/(ad-bc) (d -c c d -b a)

②当矩阵的阶数等于一阶时,他的伴随矩阵为一阶单位方阵.

3.二阶矩阵的求法口诀:主对角线对换,副对角线符号相反

参考资料:伴随矩阵的百度百科

热心网友 时间:2022-06-21 17:50

用代数余子式或者公式A的伴随矩阵=|A|*A^-1

A^*=

1 -2 7

0 1 -2

0 0 1

首先介绍 “代数余子式” 这个概念:

设 D 是一个n阶行列式,aij (i、j 为下角标)是D中第i行第j列上的元素。在D中把aij所在的第i行和第j列划去后,剩下的 n-1 阶行列式叫做元素 aij 的“余子式”,记作 Mij。把 Aij = (-1)^(i+j) *Mij 称作元素 aij 的“代数余子式”。 (符号 ^ 表示乘方运算)

首先求出 各代数余子式

A11 = (-1)^2 * (a22 * a33 - a23 * a32) = a22 * a33 - a23 * a32

A12 = (-1)^3 * (a21 * a33 - a23 * a31) = -a21 * a33 + a23 * a31

A13 = (-1)^4 * (a21 * a32 - a22 * a31) = a21 * a32 - a22 * a31

A21 = (-1)^3 * (a12 * a33 - a13 * a32) = -a12 * a33 + a13 * a32

……

A33 = (-1)^6 * (a11 * a22 - a12 * a21) = a11 * a22 - a12 * a21

然后伴随矩阵就是

A11 A21 A31

A12 A22 A32

A13 A23 A33

扩展资料:

在线性代数中,一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念  。如果二维矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数,对*矩阵不存在这个规律。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法 

设矩阵  ,将矩阵  的元素  所在的第i行第j列元素划去后,剩余的  ,各元素按原来的排列顺序组成的n-1阶矩阵所确定的行列式称为元素  的余子式,记  ,称  谓元素  的代数余子式。

(1)当矩阵是大于等于二阶时  :

主对角元素是将原矩阵该元素所在行列去掉再求行列式,非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以 ,  ,  为该元素的共轭位置的元素的行和列的序号,序号从1开始。主对角元素实际上是非主对角元素的特殊情况,因为  =  ,所以  ,一直是正数,没必要考虑主对角元素的符号问题。

(2)当矩阵的阶数等于一阶时,伴随矩阵为一阶单位方阵。

(3)二阶矩阵的求法口诀:主对角线元素互换,副对角线元素加负号。

参考资料:百度百科-伴随矩阵

热心网友 时间:2022-06-21 17:51

用代数余子式或者公式A的伴随矩阵=|A|*A^-1A^*=1    -2     70     1    -20     0     1

首先介绍 “代数余子式” 这个概念:设 D 是一个n阶行列式,aij (i、j 为下角标)是D中第i行第j列上的元素。在D中

把aij所在的第i行和第j列划去后,剩下的 n-1 阶行列式叫做元素 aij 的“余子式”,记作 Mij。把 Aij = (-1)^(i+j) *

Mij 称作元素 aij 的“代数余子式”。 (符号 ^ 表示乘方运算) 首先求出 各代数余子式 A11 = (-1)^2 * (a22 * a33 - a23 * a32) = a22 * a33 - a23 * a32 A12 = (-1)^3 * (a21 * a33 - a23 * a31) = -a21 * a33 + a23 * a31 A13

= (-1)^4 * (a21 * a32 - a22 * a31) = a21 * a32 - a22 * a31 A21 = (-1)^3 * (a12 * a33 - a13 * a32)

= -a12 * a33 + a13 * a32 …… A33 = (-1)^6 * (a11 * a22 - a12 * a21) = a11 * a22 - a12 * a21 然后伴随矩阵就是 A11 A21 A31 A12 A22 A32 A13 A23 A33

伴随矩阵=1    -2    -10     1     20     0     1

扩展资料:  

1、在线性代数中,一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念 。如果二维矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数,对*矩阵不存在这个规律。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法。

2、伴随矩阵是矩阵理论及线性代数中的一个基本概念,是许多数学分支研究的重要工具,伴随矩阵的一些新的性质被不断发现与研究。

热心网友 时间:2022-06-21 17:51

用代数余子式或者公式A的伴随矩阵=|A|*A^-1
A^*=

1 -2 7
0 1 -2
0 0 1

首先介绍 “代数余子式” 这个概念:
设 D 是一个n阶行列式,aij (i、j 为下角标)是D中第i行第j列上的元素。在D中
把aij所在的第i行和第j列划去后,剩下的 n-1 阶行列式叫做元素 aij 的“余子式”,记作 Mij。把 Aij = (-1)^(i+j) *
Mij 称作元素 aij 的“代数余子式”。 (符号 ^ 表示乘方运算)

首先求出 各代数余子式
A11 = (-1)^2 * (a22 * a33 - a23 * a32) = a22 * a33 - a23 * a32
A12 = (-1)^3 * (a21 * a33 - a23 * a31) = -a21 * a33 + a23 * a31
A13 = (-1)^4 * (a21 * a32 - a22 * a31) = a21 * a32 - a22 * a31
A21 = (-1)^3 * (a12 * a33 - a13 * a32) = -a12 * a33 + a13 * a32
……
A33 = (-1)^6 * (a11 * a22 - a12 * a21) = a11 * a22 - a12 * a21

然后伴随矩阵就是
A11 A21 A31
A12 A22 A32
A13 A23 A33追问得数呢

追答伴随矩阵=
1 -2 -1
0 1 2
0 0 1

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com